题目内容
【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,采集相应数据,对该公司2017年连续六个月的利润进行了统计,并绘制了相应的折线图,如图所示:
(1)折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2018年1月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有采购成本分别为10万元包和12万元包的、两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,不同类型的新型材料损坏的时间各不相同,已知生产新型材料的企业乙对、两种型号各100件新型材料进行过科学模拟测试,得到两种新型材料使用寿命频数统计如表:
使用寿命 材料类型 | 1个月 | 2个月 | 3个月 | 4个月 | 总计 |
20 | 35 | 35 | 10 | 100 | |
10 | 30 | 40 | 20 | 100 |
经甲公司测算,平均每包新型材料每月可以带来5万元收入,不考虑除采购成本之外的其他成本,假设每包新型材料的使用寿命都是整数月,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?
参考数据:,.
参考公式:回归直线方程为,其中.
【答案】(1)答案见解析;(2)应该采购型材料.
【解析】
(1)求出回归系数,可得回归方程,即可得出结论;
(2)分别计算相应的数学期望,即可得出结论.
(1)由题意知,,
,
其中
关于的线性回归方程为
2018年1月对应的是,则
即预测公司2018年1月份(即时)的利润为23百万元;
(2)由频率估计概率,型材料可使用1个月,2个月,3个月、4个月的概率分别为0.2,0.35,0.35,0.1
型材料利润的数学期望为万元;
型材料可使用1个月,2个月,3个月、4个月的概率分别为0.1,0.3,0.4,0.2
型材料利润的数学期望为万元;
,
应该采购型材料.