题目内容
【题目】选修4-4:坐标系与参数方程
已知在平面直角坐标系中,圆的参数方程为 (为参数).以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系.
(I)求圆的普通方程及其极坐标方程;
(II)设直线的极坐标方程为,射线与圆的交点为,与直线的交点为Q,求线段PQ的长.
【答案】(I)普通方程为:,极坐标方程为:. (II)
【解析】
(I)利用消去参数,求得圆的普通方程,将代入,可求得对应的极坐标方程.(II)分别将代入直线和圆的极坐标方程,然后两式相减,可求得的长.
(I)∵圆的参数方程为 (为参数)
∴消去参数得普通方程为:
又
∴
化简得圆的极坐标方程为:.
(II)∵射线与圆的交点为
∴把代入圆的极坐标方程可得:
又射线与直线的交点为Q
∴把代入直线极坐标方程可得:
∴
∴线段PQ的长
【题目】某面包店随机收集了面包种类的有关数据,经分类整理得到下表:
面包类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 | 第六类 |
面包个数 | 90 | 60 | 30 | 80 | 100 | 40 |
好评率 | 0.6 | 0.45 | 0.7 | 0.35 | 0.6 | 0.5 |
好评率是指:一类面包中获得好评的个数与该类面包的个数的比值.
(1)从面包店收集的面包中随机选取1个,求这个面包是获得好评的第五类面包的概率;
(2)从面包店收集的面包中随机选取1个,估计这个面包没有获得好评的概率;
(3)面包店为增加利润,拟改变生产策略,这将导致不同类型面包的好评率发生变化.假设表格中只有两类面包的好评率数据发生变化,那么哪类面包的好评率增加0.1,哪类面包的好评率减少0.1,使得获得好评的面包总数与样本中的面包总数的比值达到最大?(只需写出结论)
【题目】2018年7月24日,长春长生生物科技有限责任公司先被查出狂犬病疫苗生产记录造假,后又被测出百白破疫苗“效价测定”项不符合规定, 由此引发的疫苗事件牵动了无数中国人的心.疫苗直接用于健康人群,尤其是新生儿和青少年,与人民的健康联系紧密.因此,疫苗在上市前必须经过严格的检测,并通过临床实验获得相关数据,以保证疫苗使用的安全和有效.某生物制品研究所将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:
未感染病毒 | 感染病毒 | 总计 | |
未注射疫苗 | 20 | x | A |
注射疫苗 | 30 | y | B |
总计 | 50 | 50 | 100 |
现从所有试验小白鼠中任取一只,取到“注射疫苗”小白鼠的概率为.
(1)求2×2列联表中的数据的值;
(2)能否有99.9%把握认为注射此种疫苗有效?
(3)现从感染病毒的小白鼠中任意抽取三只进行病理分析,记已注射疫苗的小白鼠只数为,求的分布列和数学期望.
附:,n=a+b+c+d.
P(K2≥k0) | 0.05 | 0.01 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |