题目内容

11.已知一个三棱锥的三视图如图所示,则该三棱锥的体积为$\frac{2\sqrt{3}}{3}$.外接球半径为$\sqrt{5}$.

分析 几何体是一个底面是顶角为120°且底边长是2$\sqrt{3}$,在等腰三角形的顶点处有一条垂直于底面的侧棱,侧棱长是2,建立适当的坐标系,写出各个点的坐标和设出球心的坐标,根据各个点到球心的距离相等,点的球心的坐标,可得球的半径,做出体积.

解答 解:由三视图知:几何体为三棱锥,且一条侧棱与底面垂直,高为2,
三棱锥的底面为等腰三角形,且三角形的底边长为2$\sqrt{3}$,底边上的高为1,
∴几何体的体积V=$\frac{1}{3}$×$\frac{1}{2}$×2$\sqrt{3}$×1×2=$\frac{2\sqrt{3}}{3}$.
以D为原点,DB为x轴,DA为y轴,建立空间直角坐标系,
则D(0,0,0),A(0,0,2),B(2,0,0),C(-1,$\sqrt{3}$,0)
∵(x-2)2+y2+z2=x2+y2+z2,①
x2+y2+(z-2)2=x2+y2+z2,②
(x+1)2+(y-$\sqrt{3}$)2+z2=x2+y2+z2,③
∴x=1,y=$\sqrt{3}$,z=1,
∴球心的坐标是(1,$\sqrt{3}$,1),
∴球的半径是$\sqrt{5}$,
故答案为:$\frac{2\sqrt{3}}{3}$,$\sqrt{5}$.

点评 本题考查由三视图求几何体的体积,考查由三视图还原几何体,考查三棱锥与外接球之间的关系,考查利用空间向量解决立体几何问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网