ÌâÄ¿ÄÚÈÝ
7£®Èçͼ£¬Õý·½ÐÎABCDµÄ±ß³¤Îª2£¬OΪADµÄÖе㣬ÉäÏßOP´ÓOA³ö·¢£¬ÈÆ×ŵãO˳ʱÕë·½ÏòÐýתÖÁOD£¬ÔÚÐýתµÄ¹ý³ÌÖУ¬¼Ç¡ÏAOPΪx£¨x¡Ê[0£¬¦Ð]£©£¬OPËù¾¹ýµÄÔÚÕý·½ÐÎABCDÄÚµÄÇøÓò£¨ÒõÓ°²¿·Ö£©µÄÃæ»ýS=f£¨x£©£¬ÄÇô¶ÔÓÚº¯Êýf£¨x£©ÓÐÒÔÏÂÈý¸ö½áÂÛ£º¢Ùf£¨$\frac{¦Ð}{3}$£©=$\frac{\sqrt{3}}{2}$£»
¢Úº¯Êýf£¨x£©ÔÚÇø¼ä$£¨\frac{¦Ð}{2}£¬¦Ð£©$ÉÏΪ¼õº¯Êý£»
¢ÛÈÎÒâ$x¡Ê[0£¬\frac{¦Ð}{2}]$£¬¶¼ÓÐf£¨x£©+f£¨¦Ð-x£©=4£®
ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊÇ¢Ù¢Û£®
·ÖÎö ÓÉͼÐοɵ㺵±0¡Üx¡Üarctan2ʱ£¬f£¨x£©=$\frac{1}{2}$tanx£»µ±arctan2£¼x£¼$\frac{¦Ð}{2}$£¬f£¨x£©=S¾ØÐÎOABM-S¡÷OME=2-$\frac{2}{tanx}$£»µ±x=$\frac{¦Ð}{2}$ʱ£¬f£¨x£©=2£»µ± $\frac{¦Ð}{2}$£¼x¡Ü¦Ð-arctan2ʱ£¬f£¨x£©=2-$\frac{2}{tanx}$£®µ±¦Ð-arctan2£¼x¡Ü¦Ðʱ£¬f£¨x£©=4+$\frac{1}{2}$tanx£®¼´¿ÉÅжϳö£®
½â´ð ½â£ºµ±0¡Üx¡Üarctan2ʱ£¬f£¨x£©=$\frac{1}{2}$tanx£»
µ±arctan2£¼x£¼$\frac{¦Ð}{2}$£¬ÔÚ¡÷OBEÖУ¬f£¨x£©=S¾ØÐÎOABM-S¡÷OME=2-$\frac{1}{2}$EM•OM=2-$\frac{2}{tanx}$£»
µ±x=$\frac{¦Ð}{2}$ʱ£¬f£¨x£©=2£»
µ± $\frac{¦Ð}{2}$£¼x¡Ü¦Ð-arctan2ʱ£¬Í¬Àí¿ÉµÃf£¨x£©=2-$\frac{2}{tanx}$£®
µ±¦Ð-arctan2£¼x¡Ü¦Ðʱ£¬f£¨x£©=4-$\frac{1}{2}$¡Á1¡Átan£¨¦Ð-x£©=4+$\frac{1}{2}$tanx£®ÓÚÊǿɵãº
¢Ùf£¨$\frac{¦Ð}{3}$£©=$\frac{1}{2}•tan\frac{¦Ð}{3}$=$\frac{\sqrt{3}}{2}$£¬ÕýÈ·£»
¢Úµ± $\frac{¦Ð}{2}$£¼x¡Ü¦Ð-arctan2ʱ£¬ÓÉf£¨x£©=2-$\frac{2}{tanx}$£¬ÎªÔöº¯Êý£®µ±¦Ð-arctan2£¼x¡Ü¦Ðʱ£¬f£¨x£©=4+$\frac{1}{2}$tanx£¬ÎªÔöº¯Êý£¬Òò´Ë²»ÕýÈ·£®
¢Û?x¡Ê$[0£¬\frac{¦Ð}{2}]$£¬ÓÉͼÐμ°ÆäÉÏÃ棬ÀûÓöԳÆÐԿɵãºf£¨x£©+f£¨¦Ð-x£©=4£¬Òò´ËÕýÈ·£»
¹Ê´ð°¸Îª£º¢Ù¢Û£®
µãÆÀ ±¾Ì⿼²éÁËͼÐÎÃæ»ýµÄ¼ÆËã¡¢ÕýÇк¯ÊýµÄµ¥µ÷ÐÔ¡¢¼òÒ×Âß¼µÄÅж¨£¬¿¼²éÁË·ÖÀàÌÖÂÛ˼Ïë·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | -$\frac{4}{3}$ | B£® | $\frac{4}{3}$ | C£® | -$\frac{1}{2}$ | D£® | 2 |