题目内容
【题目】已知二次函数满足,且.
求的解析式;
设,若存在实数a、b使得,求a的取值范围;
若对任意,都有恒成立,求实数t的取值范围.
【答案】(1);(2)或;(3).
【解析】
利用待定系数法求出二次函数的解析式;
求出函数的值域,再由题意得出关于a的不等式,求出解集即可;
由题意知对任意,都有,讨论t的取值,解不等式求出满足条件的t的取值范围.
解:设,因为,所以;;
;;
;解得:;;
函数,若存在实数a、b使得,则,
即,,解得或,
即a的取值范围是或;
由题意知,若对任意,都有恒成立,
即,故有,
由,;
当时,在上为增函数,
,解得,所以;
当,即时,在区间上是单调减函数,
,解得,所以;
当,即时,,
若,则,解得;
若,则,解得,
所以,应取;
综上所述,实数t的取值范围是.
练习册系列答案
相关题目