题目内容

【题目】直线x+y=1与双曲线 =1 (a>0,b>0)交于M、N两点,若以M、N两点为直径的圆经过坐标原点O.
(1)求 的值;
(2)若0<a≤ ,求双曲线离心率e的取值范围.

【答案】
(1)解:由 得:(b2﹣a2)x2+2a2x﹣a2﹣a2b2=0(b2≠a2),

设M(x1,y1),N(x2,y2),则x1+x2= ,x1x2=

由题意得:x1x2+y1y2=0,

x1 x2+(1﹣x1)(1﹣x2)=1﹣(x1+x2)+2x1x2=1+ =0,

∴b2﹣a2﹣2a2b2=0,∴ =2


(2)解:∵0<a≤ 即0<2a≤1, ≤1﹣2a2<,1< ≤2,

又∵b2= ,e2= =1+ ,∴e∈( ]


【解析】(1)联立方程,利用韦达定理,结合x1x2+y1y2=0,即可求 的值;(2)若0<a≤ ,求双曲线离心率e的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网