题目内容
【题目】解关于x的不等式(a2﹣4)x2+4x﹣1>0.
【答案】解:①当a=±2时,4x﹣1>0, ;
②当a>2时,(a2﹣4)x2+4x﹣1>0,即[(a+2)x﹣1][(a﹣2)x+1]>0,解得 或 ;
③当a<﹣2时,(a2﹣4)x2+4x﹣1>0,即[(a+2)x﹣1][(a﹣2)x+1]>0,解得 或 ;
④当﹣2<a<2时,(a2﹣4)x2+4x﹣1>0,即[(a+2)x﹣1][(a﹣2)x+1]>0,解得 .
∴不等式(a2﹣4)x2+4x﹣1>0的解集为:( ,+∞);(﹣∞, )∪( ,+∞);(﹣∞, )∪( ,+∞);( , )
【解析】分类讨论:当a=±2时,当a>2时,当a<﹣2时,当﹣2<a<2时,分别求解一元二次不等式即可得答案.
【考点精析】利用解一元二次不等式对题目进行判断即可得到答案,需要熟知求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.
【题目】为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验.为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.
分数 | |||||
甲班频数 | 5 | 6 | 4 | 4 | 1 |
一般频数 | 1 | 3 | 6 | 5 | 5 |
(1)由以下统计数据填写下面列联表,并判断能否在犯错误的额概率不超过0.025的前提下认为“成绩优良与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
附:,其中.
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.