题目内容
若数列{an}是等差数列,且a3+a7=4,则数列{an}的前9项和S9等于( )
A.9 B.18 C.36 D.72
B
【解析】S9==18
设抛物线的顶点在原点,准线方程为x=-.
(1)求抛物线的标准方程;
(2)若点P是抛物线上的动点,点P在y轴上的射影是Q,点M,试判断|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,请说明理由;
(3)过抛物线焦点F作互相垂直的两直线分别交抛物线于A,C,B,D,求四边形ABCD面积的最小值.
设l是直线,α,β是两个不同的平面,下列为真命题的是( )
A.若l∥α,l∥β,则α∥β B.若l∥α,l⊥β,则α⊥β
C.若α⊥β,l⊥α,则l⊥β D.若α⊥β,l∥α,则l⊥β
等差数列{an}中,a3=3,a1+a4=5.
(1)求数列{an}的通项公式;
(2)若bn=,求数列{bn}的前n项和Sn.
数列{2n·3n}的前n项和Tn=________.
已知a,b为正实数.
(1)求证:≥a+b;
(2)利用(1)的结论求函数y= (0<x<1)的最小值.?
已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(1)当a=-2时,求不等式f(x)<g(x)的解集;
(2)设a>-1时,且当x∈时,f(x)≤g(x),求a的取值范围.
在平面直角坐标系中,直线l的参数方程为 (t为参数),若以直角坐标系的原点O为极点,x轴非负半轴为极轴,且长度单位相同,建立极坐标系,曲线C的极坐标方程为ρ=2cos.若直线l与曲线C交于A,B两点,则|AB|=________.
已知g(x)=1-2x,f(g(x))=(x≠0),那么f()等于( )
(A)15 (B)1 (C)3 (D)30