题目内容

1.求下列函数的定义域.
(1)y=$\sqrt{x-2}+{3^{\frac{1}{x-9}}}$
(2)y=$\sqrt{{{log}_{0.3}}x}$.

分析 (1)利用被开方数非负,分母不为0,列出不等式组求解即可.
(2)利用被开方数非负,求解不等式即可.

解答 解:(1)要使y=$\sqrt{x-2}+{3^{\frac{1}{x-9}}}$有意义,可得:$\left\{\begin{array}{l}x-2≥0\\ x-9≠0\end{array}\right.$,解得x∈(2,9)∪(9,+∞).
函数的定义域为:(2,9)∪(9,+∞).
(2)要使y=$\sqrt{{{log}_{0.3}}x}$有意义,可得log0.3x≥0.解得0<x≤1,函数的定义域为:(0,1].

点评 本题考查函数的定义域的求法,对数函数的简单性质的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网