题目内容

已知F1,F2是椭圆  (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于   

 

【答案】

-1  

【解析】

试题分析:根据题意,由于F1,F2是椭圆  (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。

考点:椭圆的性质

点评:主要是考查了椭圆的方程与性质的运用,属于中档题。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网