题目内容

(本小题满分14分)如图,已知四面体ABCD的四个面均为锐角三角形,E、F、G、H分别为边AB、BC、CD、DA上的点,BD∥平面EFGH,且EH=FG.

(1) 求证:HG∥平面ABC;
(2) 请在面ABD内过点E作一条线段垂直于AC,并给出证明.
(1) 证明:因为BD∥平面EFGH,平面BDC∩平面EFGH=FG,所以BD∥FG.
同理BD∥EH,又EH=FG, 所以四边形EFGH为平行四边形, 所以HG∥EF.
又HG?平面ABC,EF?平面ABC, 所以HG∥平面ABC.   (6分)
(2) 解:在平面ABC内过点E作EP⊥AC,且交AC于点P,
在平面ACD内过点P作PQ⊥AC,且交AD于点Q,
连结EQ,则EQ即为所求线段.   (10分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网