题目内容

19.将函数f(x)=cos2x的图象横坐标不变纵坐标伸长到原来的2倍,再向左平移$\frac{π}{6}$个单位后,得到函数g(x)的图象,则$g(\frac{π}{6})$=-1.

分析 根据三角函数的图象平移关系求出函数g(x)的解析式进行求解即可.

解答 解:将函数f(x)=cos2x的图象横坐标不变纵坐标伸长到原来的2倍,
得到y=2cos2x,
再向左平移$\frac{π}{6}$个单位后,得到y=2cos2(x+$\frac{π}{6}$),
即g(x)=2cos2(x+$\frac{π}{6}$),
则g($\frac{π}{6}$)=2cos2($\frac{π}{6}$+$\frac{π}{6}$)=2cos$\frac{2π}{3}$=-2cos$\frac{π}{3}$=$-2×\frac{1}{2}$=-1,
故答案为:-1.

点评 本题主要考查三角函数值的计算,利用三角函数的图象变换关系求出函数的解析式是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网