题目内容

5.已知关于x的函数f(x)=m(x2-4x+lnx)-(2m2+1)x+2lnx在点(1,0)处的切线的斜率为0.
(1)求函数f(x)的解析式;
(2)已知函数f(x)的图象与直线y=k2-2k无公共点,求实数k的取值范围.

分析 (1)求出函数的导数,由函数f(x)在(1,0)处的切线斜率为0,即有f′(1)=0,f(1)=0,列方程可得m=-1,即可得到f(x)的解析式;
(2)求f(x)的导数,令导数大于0,得增区间,令导数小于0,得减区间,进而得到函数的极大值,也为最大值0,再由题意可得k2-2k>0,解得即可.

解答 解:(1)函数f(x)=m(x2-4x+lnx)-(2m2+1)x+2lnx
的导数f′(x)=m(2x-4+$\frac{1}{x}$)-(2m2+1)+$\frac{2}{x}$,
由函数f(x)在(1,0)处的切线斜率为0,
即有f′(1)=0,f(1)=0,
即为2m2+m-1=0,且2m2+3m+1=0,
解得m=-1,
即有f(x)=-x2+x+lnx;
(2)f(x)=-x2+x+lnx的导数为f′(x)=-2x+1+$\frac{1}{x}$
=$\frac{-2{x}^{2}+x+1}{x}$=$\frac{-(2x+1)(x-1)}{x}$,
当x>1时,f′(x)<0,f(x)单调递减,
当0<x<1时,f′(x)>0,f(x)单调递增.
则有f(x)在x=1处取得极大值,也为最大值,且为0,
由于函数f(x)的图象与直线y=k2-2k无公共点,
则k2-2k>0,
解得k>2或k<0.

点评 本题考查导数的运用:求切线的斜率和单调区间及极值、最值,正确求导和解二次不等式是解题的关键

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网