题目内容

17.求曲线x${\;}^{\frac{2}{3}}$+y${\;}^{\frac{2}{3}}$=a${\;}^{\frac{2}{3}}$在点($\frac{\sqrt{2}}{4}$a,$\frac{\sqrt{2}}{4}$a)处的切线方程.

分析 对x${\;}^{\frac{2}{3}}$+y${\;}^{\frac{2}{3}}$=a${\;}^{\frac{2}{3}}$两边对x求导,可得$\frac{2}{3}$${x}^{-\frac{1}{3}}$+$\frac{2}{3}$${y}^{-\frac{1}{3}}$•y′=0,代入切点的坐标,可得斜率,再由点斜式方程,可得切线的方程.

解答 解:对x${\;}^{\frac{2}{3}}$+y${\;}^{\frac{2}{3}}$=a${\;}^{\frac{2}{3}}$两边对x求导,可得
$\frac{2}{3}$${x}^{-\frac{1}{3}}$+$\frac{2}{3}$${y}^{-\frac{1}{3}}$•y′=0,
即有y′=-$\frac{{x}^{-\frac{1}{3}}}{{y}^{-\frac{1}{3}}}$,
可得在点($\frac{\sqrt{2}}{4}$a,$\frac{\sqrt{2}}{4}$a)处的切线斜率为k=-1,
则在点($\frac{\sqrt{2}}{4}$a,$\frac{\sqrt{2}}{4}$a)处的切线方程为y-$\frac{\sqrt{2}}{4}$a=-(x-$\frac{\sqrt{2}}{4}$a),
即为x+y-$\frac{\sqrt{2}}{2}$a=0.

点评 本题考查导数的运用:求切线的方程,考查直线方程的求法,两边同时对x求导是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网