题目内容
【题目】某省数学学会为选拔一批学生代表该省参加全国高中数学联赛,在省内组织了一次预选赛,该省各校学生均可报名参加.现从所有参赛学生中随机抽取人的成绩进行统计,发现这名学生中本次预选赛成绩优秀的男、女生人数之比为,成绩一般的男、女生人数之比为.已知从这名学生中随机抽取一名学生,抽到男生的概率是
(1)请将下表补充完整,并判断是否有的把握认为在本次预选赛中学生的成绩优秀与性别有关?
成绩优秀 | 成绩一般 | 总计 | |
男生 | |||
女生 | |||
总计 |
(2)以样本估计总体,视样本频率为相应事件发生的概率,从所有本次预选赛成绩优秀的学生中随机抽取人代表该省参加全国联赛,记抽到的女生人数为,求随机变量的分布列及数学期望.
参考公式:,其中;
临界值表供参考:
|
|
|
| ||
|
|
|
|
|
【答案】(1)填表见解析,有的把握认为二者有关;(2)详见解析
【解析】
(1)由已知概率和比例完善列联表,进行独立性检验得解;
(2)随机变量服从二项分布,根据二项分布的数据特征值求解.
解析:(1)根据表中所给数据计算可得:
成绩优秀 | 成绩一般 | 总计 | |
男生 |
|
|
|
女生 |
|
|
|
总计 |
|
|
|
,
故有的把握认为二者有关;
(2)由题知,故的分布列为:
|
|
|
| |
.
【题目】某市调查机构在某设置过街天桥的路口随机调查了110人准备过马路的交通参与者对跨越护栏和走过街天桥的看法,得到如下列联表:
男 | 女 | 合计 | |
走过街天桥 | 40 | 20 | 60 |
跨越护栏 | 20 | 30 | 50 |
合计 | 60 | 50 | 110 |
附:.
0.050 | 0.010 | 0.001 | |
K | 3.841 | 6.635 | 10.828 |
则可以得到正确的结论是( )
A.有99%以上的把握认为“选择过马路的方式与性别有关”
B.有99%以上的把握认为“选择过马路的方式与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关”
【题目】我市准备实施天然气价格阶梯制,现提前调查市民对天然气价格阶梯制的态度,随机抽查了名市民,现将调查情况整理成了被调查者的频率分布直方图(如图)和赞成者的频数表如下:
年龄(岁) | ||||||
赞成人数 |
(1)若从年龄在,的被调查者中各随机选取人进行调查,求所选取的人中至少有人对天然气价格阶梯制持赞成态度的概率;
(2)若从年龄在,的被调查者中各随机选取人进行调查,记选取的人中对天然气价格实施阶梯制持不赞成态度的人数为,求随机变量的分布列和数学期望.