题目内容
【题目】已知三棱锥P﹣ABC中,AC⊥BC,AC=BC=2,PA=PB=PC=3,O是AB中点,E是PB中点.
(1)证明:平面PAB⊥平面ABC;
(2)求点B到平面OEC的距离.
【答案】(1)见解析(2)
【解析】
(1)连结PO,利用等腰三角形的性质证得,利用勾股定理计算证明证得,由此证得平面,进而证得平面平面.
(2)利用等体积法,由列方程,解方程求得到平面的距离.
(1)连结PO,在△PAB中,PA=PB,O是AB中点,
∴PO⊥AB,
又∵AC=BC=2,AC⊥BC,∴.
∵PA=PB=3,∴,PC2=PO2+OC2,
∴PO⊥OC.
又AB∩OC=O,AB平面ABC,OC平面ABC,
∴PO⊥平面ABC,
∵PO平面PAB,∴平面PAB⊥平面ABC.
(2)∵OE是△PAB的中位线,∴.
∵O是AB中点,AC=BC,∴OC⊥AB.
又平面PAB⊥平面ABC,两平面的交线为AB,∴OC⊥平面PAB,
∵OE平面PAB,∴OC⊥OE.
设点B到平面OEC的距离为d,则VB﹣OEC=VE﹣OBC,
∴,
∴点B到平面OEC的距离:
.
【题目】已知抛物线C:y2=2x的焦点为F,过焦点F的直线交抛物线于A,B两点,过A,B作准线的垂线交准线与P,Q两点.R是PQ的中点.
(1)证明:以PQ为直径的圆恒过定点F.
(2)证明:AR∥FQ.
【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | ||
第2组 | ① | ||
第3组 | 30 | ② | |
第4组 | 20 | ||
第5组 | 10 |
(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.