题目内容
13.在复平面内,复数$\frac{{i}^{2015}}{1+i}$对应的点位于( )A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 利用复数的代数形式的混合运算化简求解即可.
解答 解:复数$\frac{{i}^{2015}}{1+i}$=$\frac{-i}{1+i}$=$\frac{-i(1-i)}{(1+i)(1-i)}$=$\frac{-1-i}{2}$=$-\frac{1}{2}$$-\frac{1}{2}$i.
复数对应点为($-\frac{1}{2},-\frac{1}{2}$)在第三象限.
故选:C,
点评 本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.
练习册系列答案
相关题目
1.“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如表所示:
通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(1)求销售量y对奶茶的价格x的回归直线方程;
(2)欲使销售量为13杯,则价格应定为多少?
价格x | 5 | 5.5 | 6.5 | 7 |
销售量y | 12 | 10 | 6 | 4 |
(1)求销售量y对奶茶的价格x的回归直线方程;
(2)欲使销售量为13杯,则价格应定为多少?