题目内容

【题目】古希腊数学家阿波罗尼奥斯在他的著作《圆锥曲线论》中记载了用平面切制圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的轴重合),已知两个圆锥的底面半径为1,母线长均为,记过圆锥轴的平面ABCD为平面与两个圆锥面的交线为ACBD),用平行于的平面截圆锥,该平面与两个圆锥侧面的截线即为双曲线E的一部分,且双曲线E的两条渐近线分别平行于ACBD,则双曲线E的离心率为(

A.B.C.D.2

【答案】B

【解析】

以矩形的中心为原点,圆锥的轴为x轴建立平面直角坐标系,由题,得,从而可得到本题答案.

以矩形的中心为原点,圆锥的轴为x轴建立平面直角坐标系,

设双曲线的标准方程为

由题,得,则,即

所以.

故选:B

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网