题目内容
【题目】函数f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,则k的取值范围是( )
A.(2,+∞)
B.(1,+∞)
C.( ,+∞)
D.( ,+∞)
【答案】D
【解析】解:根据题意,x∈[1,+∞)时,x﹣2k∈[1﹣2k,+∞);
①当1﹣2k≤0时,解得k≥ ;存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,
即只要f(1﹣2k)﹣k<0即可;
∵1﹣2k≤0,∴f(1﹣2k)=﹣(1﹣2k)2,
∴﹣(1﹣2k)2﹣k<0,整理得﹣1+4k﹣4k2﹣k<0,即4k2﹣3k+1>0;
∵△=(﹣3)2﹣16=﹣7<0,
∴不等式对一切实数都成立,∴k≥ ;
②当1﹣2k>0时,解得k< ;
存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,
即只要f(1﹣2k)﹣k<0即可;
∵1﹣2k>0,∴f(1﹣2k)=(1﹣2k)2,
∴(1﹣2k)2﹣k<0,整理得4k2﹣5k+1<0,解得 <k<1;
又∵k< ,∴ <k< ;
综上,k∈( , )∪[ ,+∞)=( +∞);
∴k的取值范围是k∈( ,+∞).
故选:D.
根据题意x∈[1,+∞)时,x﹣2k∈[1﹣2k,+∞);讨论①1﹣2k≤0时和②1﹣2k>0时,存在x∈[1,+∞),使f(x﹣2k)﹣k<0时k的取值范围即可.
【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:
B餐厅分数频数分布表 | |
分数区间 | 频数 |
[0,10) | 2 |
[10,20) | 3 |
[20,30) | 5 |
[30,40) | 15 |
[40,50) | 40 |
[50,60] | 35 |
(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;
(Ⅱ)从对B餐厅评分在[0,20)范围内的人中随机选出2人,求2人中恰有1人评分在[0,10)范围内的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.