题目内容
【题目】从某学校的800名男生中随机抽取50名测量其身高,被测学生身高全部介于和之间,将测量结果按如下方式分组:第一组,第二组,…,第八组,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4.
(1)请补全频率分布直方图并求第七组的频率;
(2)估计该校的800名男生的身高的中位数以及身高在以上(含)的人数;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,,事件,事件,求
【答案】(1)见解析;(2) 中位数为.人数为144人(3)
【解析】
(1)由频率分布直方图的性质,即可求解第七组的频率;
(2)根据频率分布直方图,求得各组的频率,再根据频率分布直方图中中位数的计算公式,即可求得中位数,再根据直方图得后三组频率为,即可求解身高在以上的人数;
(3)第六组的人数为4,设为,第八组的人数为2,设为,利用列举法求得基本事件的总数,利用古典概型及其概率的计算公式,求得,进而求得,最后利用互斥事件的概率加法公式,即可求解.
(1)第六组的频率为,
由频率分布直方图的性质,
可得所以第七组的频率为.
(2)身高在第一组的频率为,
身高在第二组的频率为,
身高在第三组的频率为,
身高在第四组的频率为,
由于,,
估计这所学校的名男生的身高的中位数为m,则,
由,
得,所以可估计达所学校的名男生的身高的中位数为,
由直方图得后三组频率为,
所以身高在以上(含)的人数为.
(3)第六组的人数为4,设为,第八组,的人数为2,
设为则从中选两名男生有,,,,,,,,,,,,,,共15种情况.
因事件发生当且仅当随机抽取的两名男生在同一组,所以事件E包含的基本事件为,,,,,共7种情况,故.
由于,所以事件是不可能事件,.
由于事件E和事件F是互斥事件,所以.
【题目】某校进行理科、文科数学成绩对比,某次考试后,各随机抽取100名同学的数学考试成绩进行统计,其频率分布表如下.
分组 | 频数 | 频率 | 分组 | 频数 | 频率 | |
[135,150] | 8 | 0.08 | [135,150] | 4 | 0.04 | |
[120,135) | 17 | 0.17 | [120,135) | 18 | 0.18 | |
[105,120) | 40 | 0.4 | [105,120) | 37 | 0.37 | |
[90,105) | 21 | 0.21 | [90,105) | 31 | 0.31 | |
[75,90) | 12 | 0. 12 | [75,90) | 7 | 0.07 | |
[60,75) | 2 | 0.02 | [60,75) | 3 | 0.03 | |
总计 | 100 | 1 | 总计 | 100 | 1 |
理科 文科
(Ⅰ)根据数学成绩的频率分布表,求文科数学成绩的中位数的估计值;(精确到0.01)
(Ⅱ)请填写下面的列联表,并根据列联表判断是否有90%的把握认为数学成绩与文理科有关:
数学成绩120分 | 数学成绩<120分 | 合计 | |
理科 | |||
文科 | |||
合计 | 200 |
参考公式与临界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | ||
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【题目】某公司制造两种电子设备:影片播放器和音乐播放器.在每天生产结束后,要对产品进行检测,故障的播放器会被移除进行修复. 下表显示各播放器每天制造的平均数量以及平均故障率.
商品类型 | 播放器每天平均产量 | 播放器每天平均故障率 |
影片播放器 | 3000 | 4% |
音乐播放器 | 9000 | 3% |
下面是关于公司每天生产量的叙述:
①每天生产的播放器有三分之一是影片播放器;
②在任何一批数量为100的影片播放器中,恰好有4个会是故障的;
③如果从每天生产的音乐播放器中随机选取一个进行检测,此产品需要进行修复的概率是0.03.
上面叙述正确的是___________.