题目内容
(本小题满分12分) 已知直线L:y=x+1与曲线C:
交于不同的两点A,B;O为坐标原点。
(1)若
,试探究在曲线C上仅存在几个点到直线L的距离恰为
?并说明理由;
(2)若
,且a>b,
,试求曲线C的离心率e的取值范围。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240032574541133.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257470552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257485538.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257501509.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257516921.png)
(1)在曲线C上存在3个点到直线L的距离恰为
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257563823.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257485538.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257563823.png)
试题分析:(1)在曲线C上存在3个点到直线L的距离恰为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257485538.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257594858.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257470552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257626644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257641195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257688682.png)
又点A,B在直线L上,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257688495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257704531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257735784.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257750623.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240032577662259.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257782899.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257797455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257813611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257828591.png)
(2)因为a>b,所以曲线C为焦点在x轴上的椭圆
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257844750.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257844638.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257688495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257704531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257906818.png)
由(1)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257922854.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257938839.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257953624.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240032579841517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240032580001114.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257516921.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257563823.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240032580471752.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257641195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003257563823.png)
点评:第一问由直线与圆锥曲线相交首先利用韦达定理确定了曲线的特点(为圆)进而转化为求圆上的点到直线的距离,第二问求离心率范围,将离心率求解函数式用已知中的变量a表示,转换为求函数值域
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目