题目内容
如图,三棱柱ABC-A1B1C1中,∠CAA1=60°,AA1=2AC,BC⊥平面AA1C1C.
(1)证明:A1C⊥AB;
(2)设BC=AC=2,求三棱锥C-A1BC1的体积.
(1)证明:A1C⊥AB;
(2)设BC=AC=2,求三棱锥C-A1BC1的体积.
(1)证明:在△ACA1中,
由余弦定理得A1C2=AC2+AA12-2AC•AA1cos60°=3AC2,
∴A1C=
AC,
∴AC2+A1C2=A1A2,∴∠ACA1=90°,∴A1C⊥AC.
∵BC⊥平面AA1C1C,∴BC⊥A1C.
∵AC∩BC=C,∴A1C⊥平面ABC,∴A1C⊥AB.
(2)作A1E⊥CC1,CF⊥AA1.
则A1E⊥平面BCC1B1,四边形A1ECF为矩形.
在Rt△ACF中,CF=ACsin60°=
.
S△BCC1=
×4×2=4,
∴V三棱锥C-A1C1B=V三棱锥A1-BCC1=
×4×
=
.
由余弦定理得A1C2=AC2+AA12-2AC•AA1cos60°=3AC2,
∴A1C=
3 |
∴AC2+A1C2=A1A2,∴∠ACA1=90°,∴A1C⊥AC.
∵BC⊥平面AA1C1C,∴BC⊥A1C.
∵AC∩BC=C,∴A1C⊥平面ABC,∴A1C⊥AB.
(2)作A1E⊥CC1,CF⊥AA1.
则A1E⊥平面BCC1B1,四边形A1ECF为矩形.
在Rt△ACF中,CF=ACsin60°=
3 |
S△BCC1=
1 |
2 |
∴V三棱锥C-A1C1B=V三棱锥A1-BCC1=
1 |
3 |
3 |
4
| ||
3 |
练习册系列答案
相关题目