题目内容
【题目】已知椭圆的长轴为,且过点
(1)求椭圆的方程;
(2)设点为原点,若点在曲线上,点在直线上,且,试判断直线与圆的位置关系,并证明你的结论.
【答案】(1)(2)直线与圆相切,证明见解析
【解析】
(1)由题意可得,代入的坐标,可得,的方程,解方程可得椭圆方程;
(2)设出点,的坐标分别为,,其中,由得到,用坐标表示后把用含有点的坐标表示,然后分,的横坐标相等和不相等写出直线的方程,然后由圆的圆心到的距离和圆的半径相等,证明直线与圆相切.
(1)由题意可得,即,
又,解得,
即有椭圆的方程为;
(2)直线与圆相切.
证明如下:设点,的坐标分别为,,其中.
,
,即,
解得.
当时,,代入椭圆的方程,得,
故直线的方程为,
圆心到直线的距离.
此时直线与圆相切.
当时,直线的方程为,
即.
圆心到直线的距离
又,.
故.
此时直线与圆相切.
综合得直线与圆相切.
【题目】为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如下表:
比例 学校 等级 | 学校A | 学校B | 学校C | 学校D | 学校E | 学校F | 学校G | 学校H |
优秀 | 8% | 3% | 2% | 9% | 1% | 22% | 2% | 3% |
良好 | 37% | 50% | 23% | 30% | 45% | 46% | 37% | 35% |
及格 | 22% | 30% | 33% | 26% | 22% | 17% | 23% | 38% |
不及格 | 33% | 17% | 42% | 35% | 32% | 15% | 38% | 24% |
(1)从8所学校中随机选出一所学校,求该校为先进校的概率;
(2)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X,求X的分布列;
(3)设8所学校优秀比例的方差为S12,良好及其以下比例之和的方差为S22,比较S12与S22的大小.(只写出结果)