搜索
题目内容
设函数y=f(x)满足对任意的x∈R,f(x)≥0且f
2
(x+1)+f
2
(x)=9.已知当x∈[0,1)时,有f(x)=2-|4x-2|,则f
=________.
试题答案
相关练习册答案
由题知f
=2,因为f(x)≥0且f
2
(x+1)+f
2
(x)=9,故f
=
,f
=2,f
=
,如此循环得f
=f
=
,即f
=
练习册系列答案
解决问题专项训练系列答案
应用题夺冠系列答案
小学生生活系列答案
小学毕业总复习系列答案
优翼专项小学升学总复习系统强化训练系列答案
小学升初中夺冠密卷系列答案
小学升初中核心试卷系列答案
小学升初中进重点校必练密题系列答案
期末测试卷系列答案
小学培优总复习系列答案
相关题目
已知函数f(x)=mx+3,g(x)=x
2
+2x+m.
(1)求证:函数f(x)-g(x)必有零点;
(2)设函数G(x)=f(x)-g(x)-1,若|G(x)|在[-1,0]上是减函数,求实数m的取值范围.
经市场调查,某种商品在过去50天的销量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N),前30天价格为g(t)=
t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).
(1)写出该种商品的日销售额S与时间t的函数关系式;
(2)求日销售额S的最大值.
设函数f(x)(x∈R)满足f(-x)=f(x),f(x)=f(2-x),且当x∈[0,1]时f(x)=x
3
.又函数g(x)=|xcos(πx)|,则函数h(x)=g(x)-f(x)在
上的零点个数为________.
设
x
,
y
∈R,且4
xy
+4
y
2
+
x
+6=0,则
x
的取值范围是 ( )
A.-3≤
x
≤2
B.-2≤
x
≤3
C.
x
≤-2或
x
≥3
D.
x
≤-3或
x
≥2
知函数y=f(x)的值域为C,若函数x=g(t)使函数y=f[g(t)]的值域仍为C,则称x=g(t)是y=f(x)的一个等值域变换,下列函数中,x=g(t)是y=f(x)的一个等值域变换的为( )
A.f(x)=2x+b,x∈R,x=
B.f(x)=e
x
,x∈R,x=cost
C.f(x)=x
2
,x∈R,x=e
t
D.f(x)=|x|,x∈R,x=lnt
有一种新型的洗衣液,去污速度特别快.已知每投放k(1≤k≤4,且k∈R)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=k·f(x),其中f(x)=
若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.
(1)若只投放一次k个单位的洗衣液,两分钟时水中洗衣液的浓度为3(克/升),求k的值;
(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=
x
2
+10x(万元).当年产量不小于80千件时,C(x)=51x+
-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式.
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
设
,则
( )
A.
B.2
C.3
D.4
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总