题目内容
(本小题满分14分)如图,三棱锥A—BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形。
(Ⅰ)求证:DM//平面APC;
(Ⅱ)求证:BC⊥平面APC;
(Ⅲ)若BC=4,AB=20,求三棱锥D—BCM的体积.
(Ⅰ)求证:DM//平面APC;
(Ⅱ)求证:BC⊥平面APC;
(Ⅲ)若BC=4,AB=20,求三棱锥D—BCM的体积.
(Ⅰ)略
(Ⅱ)略
(Ⅲ)VD-BCM=VM-BCD=
(Ⅱ)略
(Ⅲ)VD-BCM=VM-BCD=
解:(Ⅰ)∵M为AB中点,D为PB中点,
∴MD//AP, 又∴MD平面ABC
∴DM//平面APC ……………3分
(Ⅱ)∵△PMB为正三角形,且D为PB中点。
∴MD⊥PB
又由(Ⅰ)∴知MD//AP, ∴AP⊥PB
又已知AP⊥PC ∴AP⊥平面PBC,
∴AP⊥BC, 又∵AC⊥BC
∴BC⊥平面APC, ……………8分
(Ⅲ)∵AB=20
∴MB="10 " ∴PB=10
又BC=4,
∴
又MD
∴VD-BCM=VM-BCD=………………12分
∴MD//AP, 又∴MD平面ABC
∴DM//平面APC ……………3分
(Ⅱ)∵△PMB为正三角形,且D为PB中点。
∴MD⊥PB
又由(Ⅰ)∴知MD//AP, ∴AP⊥PB
又已知AP⊥PC ∴AP⊥平面PBC,
∴AP⊥BC, 又∵AC⊥BC
∴BC⊥平面APC, ……………8分
(Ⅲ)∵AB=20
∴MB="10 " ∴PB=10
又BC=4,
∴
又MD
∴VD-BCM=VM-BCD=………………12分
练习册系列答案
相关题目