题目内容
(本小题满分14分)
如图, 在四棱锥
中,顶点
在底面
上的射影恰好落在
的中点
上,又∠
,
,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426236380.gif)
=1:2:2.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231644262674641.jpg)
(1) 求证:
(2) 若
, 求直线
与
所成的角的余弦值;
(3) 若平面
与平面
所成的角为
, 求
的值
如图, 在四棱锥
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426127347.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426142202.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426158301.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426174235.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426189209.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426205351.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426220331.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426236380.gif)
=1:2:2.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231644262674641.jpg)
(1) 求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426283342.gif)
(2) 若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426298322.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426314240.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426174235.gif)
(3) 若平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426361264.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426376271.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426392239.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426392246.gif)
(1)证明略
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426408169.gif)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426439298.gif)
因为
中点
为点
在平面ABCD内的射影, 所以
底面
. 以
为坐标原点,
所在直线为
轴,
所在直线为
轴, 建立空间直角坐标系![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426688371.gif)
(如图).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231644267207377.jpg)
(1)设
, OP = h则依题意得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426751859.gif)
--- 4分
.
∴
=
,
=
,
于是
·
=
, ∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426283342.gif)
(2)由
, 得h =" a," 于是
,
--- 5分
∵
=
,
=
, ∴
·
=
,
cos<
,
> =
=
, ∴ 直线
与
所成的角的余弦值为
;
(3) 设平面
的法向量为m, 可得m =" (0,1,0" ),
设平面
的法向量为n =
, 由
=
,
=
,
∴
, 解得n =" (1," 2 ,
), ∴ m•n =" 2" ,
cos< m, n > =
, ∵ 二面角为
, ∴
= 4,
解得
=
,即
=
. --- 5分
(以传统方法解答相应给分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426174235.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426189209.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426142202.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426501262.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426158301.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426189209.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426174235.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426642187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426657246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426673129.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426688371.gif)
(如图).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231644267207377.jpg)
(1)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426735285.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426751859.gif)
--- 4分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426844663.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426860358.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426876454.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426891253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426907458.gif)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426860358.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426891253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427000485.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426283342.gif)
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426298322.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427063356.gif)
--- 5分
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427078355.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427110458.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426891253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427141445.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427078355.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426891253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427203243.gif)
cos<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427078355.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426891253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427266509.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427281288.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426314240.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426174235.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426408169.gif)
(3) 设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427390266.gif)
设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426376271.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427437407.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427468250.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427484428.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426891253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426907458.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427687793.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427702359.gif)
cos< m, n > =
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427718573.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426392239.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427765529.gif)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427780234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426439298.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164427827316.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164426439298.gif)
(以传统方法解答相应给分)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目