题目内容
已函数
是定义在
上的奇函数,在
上时![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031444571891.png)
(Ⅰ)求函数
的解析式;
(Ⅱ)解不等式
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031444524499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031444540328.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031444556363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031444571891.png)
(Ⅰ)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031444524499.png)
(Ⅱ)解不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031444602768.png)
(Ⅰ)
;(Ⅱ)[0,1]
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240314446341982.png)
试题分析:(Ⅰ)由奇函数及在[0,1]上的解析式可得函数在[-1,0]上的解析式.从而即可得在[-1,1]上的解析式.本小题主要是考查分段函数的解析式问题.
(Ⅱ)由题意可知函数f(x)在[-1,1]上是递增函数.又因为函数f(x)是奇函数.所以通过
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031444602768.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031444665767.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240314446651010.png)
试题解析:(Ⅰ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031444680459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031444712462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240314447271141.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031444758777.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240314447741966.png)
(Ⅱ)易知f(x)是[-1,1]上增函数.由已知得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031444665767.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240314448052097.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目