题目内容

已知tanx=2,求
2sin(π+x)cos(π-x)-cos(π+x)
1+sin2x+sin(π-x)-cos2(π-x)
的值.
考点:运用诱导公式化简求值
专题:计算题,三角函数的求值
分析:运用诱导公式和同角的平方关系、商数关系,即可化简得到.
解答: 解:
2sin(π+x)cos(π-x)-cos(π+x)
1+sin2x+sin(/π-x)-cos2(π-x)

=
-2sinx•(-cosx)+cosx
1+sin2x+sinx-cos2x
=
cosx(2sinx+1)
2sin2x+sinx

=
cosx(2sinx+1)
sinx(2sinx+1)
=
1
tanx

由于tanx=2,则原式=
1
2
点评:本题考查诱导公式及运用,考查同角三角函数的基本关系式,考查运算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网