题目内容
已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*,f(n)都能被m整除,则m的最大值为( )
(A)18 (B)36 (C)48 (D)54
B
【解析】先求出当n=1,2,3时f(n)的值,由此猜想m的最大值,再用数学归纳法证明结论成立.
由于f(1)=36,f(2)=108,f(3)=360都能被36整除,猜想f(n)能被36整除,即m的最大值为36.当n≥1时,可知猜想成立.假设当n=k(k≥1,k∈N*)时,猜想成立,即f(k)=(2k+7)·3k+9能被36整除;当n=k+1时,f(k+1)=(2k+9)
·3k+1+9=(2k+7)·3k+9+36(k+5)·3k-2,因此f(k+1)也能被36整除,故所求m的最大值为36.
练习册系列答案
相关题目