题目内容

 (本小题满分1 2分)

    甲有一个放有3个红球、2个白球、1个黄球共6个球的箱子,乙也有一个放有3个红球、2个白球、1个黄球共6个球的箱子.

  (1)若甲在自己的箱子里任意取球,取后不放回,每次只取一球,直到取得红球为止,求甲取球次数的数学期望;

(2)若甲、乙两人各自从自己的箱子里任取一球比颜色,规定同色时为甲胜,异色时为乙胜,这个游戏规则公平吗?请说明理由.

 

 

 

 

 

【答案】

 解:(1)的可能取值为l,2,3,4.

       

                                              (4分)

        ∴甲取球次数的数学期望. (6分)

(2)由题意,两人各自从自己的箱子里任取一球比颜色

共有(种)不同情形,                             (8分)

每种情形都是等可能,记甲获胜为事件A,则

                    (11分)

        所以甲获胜的概率小于乙获胜的概率,这个游戏规则不公平           (12分)

 

练习册系列答案
相关题目

 (本小题满分1 2分)

三角形的三内角所对边的长分别为,设向量,若

(1)求角的大小;

(2)求的取值范围.

 

 

 

 

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网