题目内容
【题目】已知正三棱锥P-ABC,Q为BC中点,,,则正三棱锥P-ABC的外接球的半径为________;过Q的平面截三棱锥P-ABC的外接球所得截面的面积范围为________.
【答案】
【解析】
根据正三棱锥,,,有,即,同理,,则此正三棱锥P-ABC为正方体的一角,根据球的直径为正方体的体对角线的长求解.根据当截面过球心时,截面面积最大,当球心与Q的连线垂直截面时,截面面积最小求截面的面积范围.
因为正三棱锥,,,
所以,即,
同理,,
因此正三棱锥P-ABC可看作正方体的一角,如图,
记正方体的体对角线的中点为O,由正方体结构特征可得,O点即是正方体的外接球球心,
所以点O也是正三棱锥P-ABC外接球的球心,
记外接球半径为R,则,
因为球的最大截面圆为过球心的圆,
所以过Q的平面截三棱锥P-ABC的外接球所得截面的面积最大为;
又Q为BC中点,由正方体结构特征可得;
由球的结构特征可知,当OQ垂直于过Q的截面时,
截面圆半径最小为,所以.
因此,过Q的平面截三棱锥P-ABC的外接球所得截面的面积范围为.
故答案为:(1). (2).
【题目】这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
全国累计报告确诊病例数量(万人) | 1.4 | 1.7 | 2.0 | 2.4 | 2.8 | 3.1 | 3.5 |
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系?
(2)求出关于的线性回归方程(系数精确到0.01).并预测2月10日全国累计报告确诊病例数.
参考数据:,,,.
参考公式:相关系数
回归方程中斜率和截距的最小二乘估计公式分别为:
,.