ÌâÄ¿ÄÚÈÝ

6£®Èçͼ£¬ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬ËüµÄËĸö¶¥µãÁ¬³ÉµÄÁâÐεÄÃæ»ýΪ8$\sqrt{2}$£®¹ý¶¯µãP£¨²»ÔÚxÖáÉÏ£©µÄÖ±ÏßPF1£¬PF2ÓëÍÖÔ²µÄ½»µã·Ö±ðΪA£¬BºÍC£¬D£®
£¨1£©Çó´ËÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚµãP£¬Ê¹|AB|=2|CD|£¬Èô´æÔÚÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÈôµãPÔÚË«ÇúÏß$\frac{x^2}{4}-\frac{y^2}{2}$=1£¨³ý¶¥µãÍ⣩ÉÏÔ˶¯£¬Ö¤Ã÷£º|AB|+|CD|Ϊ¶¨Öµ£¬²¢Çó³ö´Ë¶¨Öµ£®

·ÖÎö £¨1£©Ö±½Ó¼ÆËã¼´µÃ½áÂÛ£»
£¨2£©·ÖÖ±ÏßPF2µÄбÂÊ´æÔÚÓë²»´æÔÚÁ½ÖÖÇé¿öÌÖÂÛ¼´¿É£»
£¨3£©ÉèµãP£¨x£¬y£©£¬ÀûÓÃбÂÊ¡¢Á½µã¼ä¾àÀ빫ʽ¼ÆËã¼´µÃ½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßS=2ab=8$\sqrt{2}$£¬e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬ÇÒa£¾b£¾0£¬
¡àa=2$\sqrt{2}$£¬b=c=2£¬
¡àËùÇóµÄÍÖÔ²·½³ÌΪ£º$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1£»
£¨2£©½áÂÛ£º²»´æÔÚÕâÑùµÄµãP£¬Ê¹µÃ|AB|=2|CD|³ÉÁ¢£®
ÀíÓÉÈçÏ£º
Èô|AB|=2|CD|³ÉÁ¢£¬µãP±ØÔÚyÖáµÄÓҲ࣬
¹ÊÖ±ÏßPF1±Ø´æÔÚÉèΪk1£¬
µ±Ö±ÏßPF2µÄбÂÊ´æÔÚʱÉèΪk2£¬
´ËʱÓÐÖ±ÏßPF1Ϊ£ºy=k1£¨x+2£©£¬Ö±ÏßPF2Ϊ£ºy=k2£¨x-2£©£¬
ÓÉy=k1£¨x+2£©´úÈë$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1£¬ÏûÈ¥yÕûÀíµÃ£¬£¨1+2${{k}_{1}}^{2}$£©x2+8${{k}_{1}}^{2}$x+8£¨${{k}_{1}}^{2}$-1£©=0£¬
ÓÉΤ´ï¶¨Àí£¬µÃx1+x2=-$\frac{8{{k}_{1}}^{2}}{1+2{{k}_{1}}^{2}}$£¬x1x2=$\frac{8£¨{{k}_{1}}^{2}-1£©}{1+2{{k}_{1}}^{2}}$£¬
¡à|AB|=$\sqrt{1+{{k}_{1}}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{{k}_{1}}^{2}}$•$\sqrt{£¨\frac{-8{{k}_{1}}^{2}}{1+2{{k}_{1}}^{2}}£©^{2}-4•\frac{8£¨{{k}_{1}}^{2}-1£©}{1+2{{k}_{1}}^{2}}}$
=4$\sqrt{2}$•$\frac{1+{{k}_{1}}^{2}}{1+2{{k}_{1}}^{2}}$£¬
ͬÀí£¬¿ÉµÃ|CD|=4$\sqrt{2}$•$\frac{1+{{k}_{2}}^{2}}{1+2{{k}_{2}}^{2}}$£¬
Èô|AB|=2|CD|³ÉÁ¢£¬ÔòÓÐ$\frac{1+{{k}_{1}}^{2}}{1+2{{k}_{1}}^{2}}$=2•$\frac{1+{{k}_{2}}^{2}}{1+2{{k}_{2}}^{2}}$£¬
ÕûÀíµÃ£º2${{k}_{1}}^{2}$${{k}_{2}}^{2}$+3${{k}_{1}}^{2}$+1=0£¬
ÒòΪ´Ë·½³ÌÎÞʵÊý½â£¬ËùÒÔ²»´æÔÚÕâÑùµÄµãP£¬Ê¹µÃ|AB|=2|CD|³ÉÁ¢£®
µ±Ö±ÏßPF2µÄбÂʲ»´æÔÚʱ£¬|CD|=$\frac{2{b}^{2}}{a}$=2$\sqrt{2}$£¬
´Ëʱ|AB|=2|CD|=4$\sqrt{2}$=2a²»³ÉÁ¢£®
×ÛÉϿɵ㬲»´æÔÚÕâÑùµÄµãP£¬Ê¹µÃ|AB|=2|CD|³ÉÁ¢£»
£¨3£©ÉèµãP£¨x£¬y£©£¬Ôòk1=$\frac{y}{x+2}$£¬k2=$\frac{y}{x-2}$£¬k1k2=$\frac{{y}^{2}}{{x}^{2}-4}$£¬
ÈôµãÔÚË«ÇúÏß$\frac{x^2}{4}-\frac{y^2}{2}$=1£¨³ý¶¥µãÍ⣩ÉÏÔ˶¯£¬
ÔòÓÐx2-4=2y2£¬¡àk1k2=$\frac{{y}^{2}}{{x}^{2}-4}$=$\frac{1}{2}$£¬
ÓÉ£¨2£©¿ÉÖª£¬|AB|+|CD|=4$\sqrt{2}$•£¨$\frac{1+{{k}_{1}}^{2}}{1+2{{k}_{1}}^{2}}$+$\frac{1+{{k}_{2}}^{2}}{1+2{{k}_{2}}^{2}}$£©
=4$\sqrt{2}$•$\frac{2+3{{k}_{1}}^{2}+3{{k}_{2}}^{2}+4{{k}_{1}}^{2}{{k}_{2}}^{2}}{1+2{{k}_{1}}^{2}+2{{k}_{2}}^{2}+4{{k}_{1}}^{2}{{k}_{2}}^{2}}$
=4$\sqrt{2}$•£¨1+$\frac{1+{{k}_{1}}^{2}+{{k}_{2}}^{2}}{1+2{{k}_{1}}^{2}+2{{k}_{2}}^{2}+4•£¨\frac{1}{2}£©^{2}}$£©
=4$\sqrt{2}$•£¨1+$\frac{1}{2}$£©=6$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø