题目内容
(本小题满分12分)已知向量
=(sin(
+x),
cosx),
=(sinx,cosx), f(x)=
·
.
⑴求f(x)的最小正周期和单调增区间;
⑵如果三角形ABC中,满足f(A)=
,求角A的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120485203.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120500233.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120516227.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120531203.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120485203.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120531203.gif)
⑴求f(x)的最小正周期和单调增区间;
⑵如果三角形ABC中,满足f(A)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120672270.gif)
(Ⅰ) [kπ-
,kπ+
],k∈Z. (Ⅱ) A=
或
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120687387.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120703360.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120719230.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120843267.gif)
⑴f(x)= sinxcosx+
+
cos2x= sin(2x+
)+
………3分
T=π,2 kπ-
≤2x+
≤2 kπ+
,k∈Z,
最小正周期为π,单调增区间[kπ-
,kπ+
],k∈Z.……………………6分
⑵由sin(2A+
)=0,
<2A+
<
,……………9分
∴2A+
=π或2π,∴A=
或
……………………12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120672270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120672270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120719230.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120672270.gif)
T=π,2 kπ-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120500233.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120719230.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120500233.gif)
最小正周期为π,单调增区间[kπ-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120687387.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120703360.gif)
⑵由sin(2A+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120719230.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120719230.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120719230.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131121124357.gif)
∴2A+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120719230.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120719230.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131120843267.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目