题目内容
函数f(x)=的值域为________.
(-∞,2)
【解析】当x≥1时,≤=0,即f(x)≤0;当x<1时,0<2x<21,即0<f(x)<2,所以函数f(x)的值域为(-∞,2).
若函数f(x)=ax2-3x+4在区间(-∞,6)上单调递减,则实数a的取值范围是________.
判断下列函数的奇偶性:
(1)f(x)=x4+x;
(2)f(x)=
(3)f(x)=lg(x+).
已知函数f(x)=2x-,x∈(0,1].
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在x∈(0,1]上是减函数,求实数a的取值范围.
已知二次函数f(x)=ax2+bx(a、b为常数,且a≠0)满足条件:f(x-1)=f(3-x),且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)定义域和值域分别为[m,n]和[4m,4n]?如果存在,求出m、n的值;如果不存在,说明理由.
求下列函数的值域:
(1) f(x)=;
(2) g(x)=;
(3) y=log3x+logx3-1.
函数f(x)=的值域为____________.
已知函数f(x)=lnx-ax2+(2-a)x.
(1)讨论f(x)的单调性;
(2)设a>0,证明:当0<x<时,f>f;
(3)若函数y=f(x)的图象与x轴交于A、B两点,线段AB中点的横坐标为x0,证明:<0.
已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R.
(1)当a<0时,解不等式f(x)>0;
(2)若f(x)在[-1,1]上是单调函数,求a的取值范围;
(3)当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.