题目内容
【题目】设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换.
(1)判断下列函数是不是函数的一个等值域变换?说明你的理由;
①;
②.
(2)设的定义域为,已知是的一个等值域变换,且函数的定义域为,求实数的值.
【答案】(1)①不是等值域变换,②是等值域变换; (2).
【解析】试题分析:(1)运用对数函数的值域和基本不等式,结合新定义即可判断①;运用二次函数的值域和指数函数的值域,结合新定义即可判断②;
(2)利用f(x)的定义域,求得值域,根据x的表达式,和t值域建立不等式,利用存在t1,t2∈R使两个等号分别成立,求得m和n.
试题解析:
(1)①,x>0,值域为R,
,t>0,由g(t)2可得y=f[g(t)]的值域为[1,+∞).
则x=g(t)不是函数y=f(x)的一个等值域变换;
②,即的值域为,
当时, ,即的值域仍为,所以是的一个等值域变换,故①不是等值域变换,②是等值域变换;
(2)定义域为,因为是的一个等值域变换,且函数的定义域为, 的值域为,
,
恒有,解得.
练习册系列答案
相关题目
【题目】某同学用“五点法”画函数 在某一周期内的图象时,列表并填入了部分数据,如下表:
0 | |||||
0 | 2 | 0 | 0 |
(Ⅰ)请将上表数据补充完整,函数的解析式(直接写出结果即可)
(Ⅱ)求函数的单调递增区间;/span>
(Ⅲ)求函数在区间上的最大值和最小值.