题目内容

已知向量
m
=(a,b),
n
=(sin2x,2cos2x),若f(x)=
m
n
,且f(0)=8,f(
π
6
)=12

(1)求a,b的值;
(2)求函数f(x)的最大值及取得最大值时的x的集合;
(3)求函数f(x)的单调增区间.
(1)由题意可知f(x)=asin2x+2bcos2x
由f(0)=2b=8,解得b=4.
f(
π
6
)=asin
π
3
+2bcos2
π
6
=
3
2
a+8×
3
4
=12
,解得a=4
3

(2)由(1)可知f(x)=4
3
sin2x+4cos2x+4
=8(
3
2
sin2x+
1
2
cos2x)
+4
f(x)=8sin(2x+
π
6
)+4

2x+
π
6
=2kπ+
π
2
,k∈Z
时,sin(2x+
π
6
)
取得最大值1,
∴f(x)max=8×1+4=12
此时x的集合为{x|x=kπ+
π
6
,k∈Z}

(3)由-
π
2
+2kπ≤2x+
π
6
≤2kπ+
π
2
(k∈Z),
解得kπ-
π
3
≤x≤kπ+
π
6
(k∈Z).
∴函数f(x)的单调增区间是[kπ-
π
3
,kπ+
π
6
]
(k∈Z).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网