题目内容
【题目】已知a、b、c、d∈R,且a+b=c+d=1,ac+bd>1.求证:a、b、c、d中至少有一个是负数.
【答案】证明:假设a、b、c、d都是非负数, ∵a+b=c+d=1,
∴(a+b)(c+d)=1.
∴ac+bd+bc+ad=1≥ac+bd.
这与ac+bd>1矛盾.
所以假设不成立,即a、b、c、d中至少有一个负数
【解析】利用反证法进行证明,假设a、b、c、d都是非负数,找出矛盾即可.
【考点精析】掌握反证法与放缩法是解答本题的根本,需要知道常见不等式的放缩方法:①舍去或加上一些项②将分子或分母放大(缩小).
练习册系列答案
相关题目