题目内容

【题目】将函数f(x)= sin2x﹣ cos2x+1的图象向左平移 个单位,再向下平移1个单位,得到函数y=g(x)的图象,则下列关予函数y=g(x)的说法错误的是(
A.函数y=g(x)的最小正周期为π
B.函数y=g(x)的图象的一条对称轴为直线x=
C. g(x)dx=
D.函数y=g(x)在区间[ ]上单调递减

【答案】D
【解析】解:把f(x)= sin2x﹣ cos2x+1=2sin(2x﹣ )+1的图象向左平移 个单位, 得到函数y=2sin[2(x+ )﹣ ]+1=2sin(2x+ )+1的图象,
再向下平移1个单位,得到函数y=g(x)=2sin(2x+ )的图象,
对于A,由于T= ,故正确;
对于B,由2x+ =kπ+ ,k∈Z,解得:x= + ,k∈Z,可得:当k=0时,y=g(x)的图象的一条对称轴为直线x= ,故正确;
对于C, g(x)dx= 2sin(2x+ )dx=﹣cos(2x+ )| =﹣(cos ﹣cos )= ,故正确;
对于D,由2kπ+ ≤2x+ ≤2kπ+ ,k∈Z,解得:kπ+ ≤x≤kπ+ ,k∈Z,可得函数y=g(x)在区间[ ]上单调递减,故错误.
故选:D.
利用两角差的正弦函数公式、函数y=Asin(ωx+φ)的图象变换规律,可得g(x),利用正弦函数的图象和性质逐一分析各个选项即可得解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网