题目内容
【题目】已知函数,
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,若在区间上的最小值为-2,其中是自然对数的底数,求实数的取值范围;
【答案】(1).
(2).
【解析】分析:(1)求出,由 的值可得切点坐标,由的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;(2)分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,根据单调性求得函数最小值,令所求最小值等于,排除不合题意的的取值,即可求得到符合题意实数的取值范围.
详解:(Ⅰ)当时,,
因为,所以切线方程是
(Ⅱ)函数的定义域是
当时,
令得或
当时,所以在上的最小值是,满足条件,于是
②当,即时,在上的最小,即时,在上单调递增
最小值,不合题意;
③当,即时,在上单调递减,所以在上的最小值是,不合题意.
综上所述有,.
【题目】某学校餐厅新推出A、B、C、D四款套餐,某一天四款套餐销售情况的条形图如下.为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
满意 | 一般 | 不满意 | |
A套餐 | 50% | 25% | 25% |
B套餐 | 80% | 0 | 20% |
C套餐 | 50% | 50% | 0 |
D套餐 | 40% | 20% | 40% |
(Ⅰ)若同学甲选择的是A款套餐,求甲的调查问卷被选中的概率;
(Ⅱ)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择的是D款套餐的概率.
【题目】在一次抽样调查中测得样本的5个样本点,数值如下表:
| 0.25 | 0.5 | 1 | 2 | 4 |
16 | 12 | 5 | 2 | 1 |
(1)根据散点图判断,哪一个适宜作为关于的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果试建立与之间的回归方程.(注意或计算结果保留整数)
(3)由(2)中所得设z=+且,试求z的最小值。
参考数据及公式如下:
,,