题目内容
【题目】对于函数.
(1)当向下和向左各平移一个单位,得到函数,求函数的零点;
(2)对于常数,讨论函数的单调性;
(3)当,若对于函数满足恒成立,求实数取值范围.
【答案】(1)或;(2)当,单调递增;当,在上递增,上递减,上递增;当,在递增,递减,递增;(3).
【解析】
(1)将,求得,利用图象变换原则求得,分类讨论去掉绝对值符号,求得函数的零点;
(2)将函数解析式中的绝对值符号去掉,得到分段函数,利用导数,分类讨论求得函数的单调性;
(3)化简函数解析式,将不等式转化,找出不等式恒成立的关键条件,得到结果.
(1)因为,所以,
根据题意,可得,
令,即,
当时,原式化为,
解得或,
当时,原式化为,无解,
所以函数的零点为或;
(2),
当时,, ,
当时,, ,
所以当时,恒成立,在上单调递增,
当时,令,解得或,
所以在和上单调递增,
令,解得,所以所以在上单调递减。,
当时,令,解得或,
所以在和上递增,
令,解得,所以所以在上单调递减,
综上,当时,在上单调递增;
当,在上递增,上递减,上递增;
当时,在递增,递减,递增;
(3)时,,
即为,
整理得,
化简得
当时,原式可化为,显然不成立,
当时,
分类讨论,可求得和时都恒成立,
对于,要使式子成立,
即在时成立,
只要,
结合的条件,解得,
当时,上式对于时就不成立,所以不满足条件,
综上,所求实数的取值范围是.
【题目】为了调查某大学学生在某天上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查. 得到如下的统计结果.
表1:男生上网时间与频数分布表:
上网时间(分钟) | |||||
人数 | 10 | 20 | 40 | 20 | 10 |
表2:女生上网时间与频数分布表:
上网时间(分钟) | |||||
人数 | 5 | 25 | 30 | 25 | 15 |
完成下面的2×2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”?
附:,其中