题目内容
设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为( )
A.y=x-1或y=-x+1 |
B.y=(x-1)或y=-(x-1) |
C.y=(x-1)或y=-(x-1) |
D.y=(x-1)或y=-(x-1) |
C
设A(x1,y1),B(x2,y2),
又F(1,0),
则=(1-x1,-y1),=(x2-1,y2),
由题意知=3,
因此
即
又由A、B均在抛物线上知
解得
直线l的斜率为=±,
因此直线l的方程为y=(x-1)或y=-(x-1).
故选C.
又F(1,0),
则=(1-x1,-y1),=(x2-1,y2),
由题意知=3,
因此
即
又由A、B均在抛物线上知
解得
直线l的斜率为=±,
因此直线l的方程为y=(x-1)或y=-(x-1).
故选C.
练习册系列答案
相关题目