题目内容

【题目】已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)等比数列{bn}满足:b1=a1 , b2=a2﹣1,若数列cn=anbn , 求数列{cn}的前n项和Sn

【答案】解:(Ⅰ)设等差数列{an}的公差为d,则依题设d>0
由a2+a7=16.得2a1+7d=16
由a3a6=55得(a1+2d)(a1+5d)=55
由①得2a1=16﹣7d将其代入②得(16﹣3d)(16+3d)=220.
即256﹣9d2=220
∴d2=4,又d>0
∴d=2,代入①得a1=1,∴an=1+(n﹣1)2=2n﹣1.
(Ⅱ)b1=1,b2=2




两式相减可得:
=1+2× ﹣(2n﹣1)2n
=2n+1﹣3﹣(2n﹣1)2n

【解析】(Ⅰ)设等差数列{an}的公差为d,d>0,利用等差数列的通项表示已知,求解出d,a1 , 结合等差数列的通项即可求解(Ⅱ)由b1=1,b2=2可求 ,结合数列的特点,考虑利用错位相减求解数列的和
【考点精析】通过灵活运用等差数列的通项公式(及其变式)和数列的前n项和,掌握通项公式:;数列{an}的前n项和sn与通项an的关系即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网