题目内容
如图,在三棱柱A1B1C1-ABC中,A1A⊥平面ABC,A1A=AB=AC,AB⊥AC,点D是BC上一点,且AD⊥C1D.
(1)求证:平面ADC1⊥平面BCC1B1;
(2)求证:A1B∥平面ADC1;
(3)求二面角C-AC1-D大小的余弦值.
(1)求证:平面ADC1⊥平面BCC1B1;
(2)求证:A1B∥平面ADC1;
(3)求二面角C-AC1-D大小的余弦值.
(1)证明:依题意,C1C⊥平面ABC,∵AD?平面ABC∴C1C⊥AD,…(2分)
又AD⊥C1D,∴C1C∩C1D=C1∴AD⊥平面BC1,又AD?平面ABC…(3分)
∴平面ADC1⊥平面BCC1B1…(4分)
(2)证明:连接A1C交AC1于点E,则E是A1C的中点,连接DE.…(5分)
由(1)知AD⊥平面BC1,∴AD⊥BC,∴D是BC中点…(6分)
∴A1B∥DE…(7分)
又∵DE?平面ADC1,∵A1B?平面ADC1∴A1B∥平面ADC1.…(8分)
(3)如图,建立空间直角坐标系Axyz,设A1A=AB=AC=2,
则A(0,0,0),D(1,1,0),C1(0,2,2).…(9分)
=(1,1,0),
=(0,2,2),
设平面ADC1的一个法向量为
=(x,y,z),
则
•
=0,
•
=0,
即
,令x=1,得y=-1,z=1,
∴
=(1,-1,1).
取平面CAC1的一个法向量为
=(1,0,0),…(11分)
则cos<
,
>=
=
=
.
所以二面角C-AC1-D大小的余弦值为
.…(13分)
又AD⊥C1D,∴C1C∩C1D=C1∴AD⊥平面BC1,又AD?平面ABC…(3分)
∴平面ADC1⊥平面BCC1B1…(4分)
(2)证明:连接A1C交AC1于点E,则E是A1C的中点,连接DE.…(5分)
由(1)知AD⊥平面BC1,∴AD⊥BC,∴D是BC中点…(6分)
∴A1B∥DE…(7分)
又∵DE?平面ADC1,∵A1B?平面ADC1∴A1B∥平面ADC1.…(8分)
(3)如图,建立空间直角坐标系Axyz,设A1A=AB=AC=2,
则A(0,0,0),D(1,1,0),C1(0,2,2).…(9分)
AD |
AC1 |
设平面ADC1的一个法向量为
m |
则
m |
AD |
m |
AC1 |
即
|
∴
m |
取平面CAC1的一个法向量为
n |
则cos<
m |
n |
| ||||
|
|
1 | ||
|
| ||
3 |
所以二面角C-AC1-D大小的余弦值为
| ||
3 |
练习册系列答案
相关题目