题目内容

如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠ABC=
π
4
,PA⊥底面ABCD,PA=2,M为PA的中点,N为BC的中点.AF⊥CD于F,如图建立空间直角坐标系.
(Ⅰ)求出平面PCD的一个法向量并证明MN平面PCD;
(Ⅱ)求二面角P-CD-A的余弦值.
(Ⅰ)证:∵底面ABCD是边长为1的菱形,∠ABC=
π
4

PA⊥底面ABCD,PA=2,M为PA的中点,N为BC的中点.AF⊥CD于F,
∴由题设知:在Rt△AFD中,AF=FD=
2
2

∴A(0,0,0),B(1,0,0),F(0,
2
2
,0),
D(-
2
2
2
2
,0),P(0,0,2),M(0,0,1),N(1-
2
4
2
4
,0),…(4分)
MN
=(1-
2
4
2
4
,-1)
,…(5分)
PF
=(0,
2
2
,-2)
PD
=(-
2
2
2
2
,-2)
…(6分)
设平面PCD的一个法向量为
n
=(x,y,z)
n
PF
=0
n
PD
=0
,∴
2
2
y-2z=0
-
2
2
x+
2
2
y-2z=0

令z=
2
,得
n
=(0,4,
2
),
∴平面PCD的一个法向量
n
=(0,4,
2
)…(8分)
MN
n
=0+
2
-
2
=0,
∴MN平面PCD.…(10分)
(Ⅱ)由(Ⅰ)得平面PCD的法向量
n
(0,4,
2
),
平面ADC的一个法向量为
AM
=(0,0,1)
…(12分)
设二面角P-CD-A的平面角为α,
cosα=
n
AM
|
n
|•|
AM
|
=
2
18
×1
=
1
3

∴二面角P-CD-A的余弦值为
1
3
.…(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网