题目内容
【题目】如图,在平面直角坐标系中,角以为始边,终边与单位圆相交于点.过点的圆的切线交轴于点,点的横坐标关于角的函数记为. 则下列关于函数的说法正确的( )
A. 的定义域是
B. 的图象的对称中心是
C. 的单调递增区间是
D. 对定义域内的均满足
【答案】B
【解析】
由三角函数的定义可知:P(cosα,sinα),则以点P为切点的圆的切线方程为:xcosα+ysinα=1,得:函数f(α)=,结合三角函数的性质得解.
由三角函数的定义可知:P(cosα,sinα),
则以点P为切点的圆的切线方程为:xcosα+ysinα=1,
由已知有cosα≠0,
令y=0,得:x=,
即函数f(α)=,
由cosα≠0,得:α≠2kπ±,即函数f(α)的定义域为:
±,k∈z},故A错误,
由复合函数的单调性可知:函数f(α)的增区间为:
[2kπ,2k),(2k2kπ+π],k∈Z,故C错误,
f(α),故D错误,
函数f(α)的对称中心为(k,0),k∈Z,故B正确.
故选:B.
【题目】大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:
月份 | 7 | 8 | 9 | 10 | 11 | 12 |
销售单价(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
销售量(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根据7至11月份的数据,求出关于的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程,其中,参考数据: .
【题目】在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方式,某机构对“使用微信交流”的态度进行调查,随机抽取了100人,他们年龄的频数分布及对“使用微信交流”赞成的人数如下表:(注:年龄单位:岁)
年龄 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
频数 | 10 | 30 | 30 | 20 | 5 | 5 |
赞成人数 | 8 | 25 | 24 | 10 | 2 | 1 |
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面的2×2列联表,并通过计算判断是否在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”?
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
若从年龄在[55,65),[65,75)的别调查的人中各随机选取两人进行追踪调查,记选中的4人中赞成“使用微信交流”的人数为X,求随机变量X的分布列及数学期望.
参考数据:
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:K2=,其中n=a+b+c+d.