题目内容

16.已知等比数列{an}的前10项的积为32,则以下说法中正确的个数是(  )
①数列{an}的各项均为正数;  ②数列{an}中必有小于$\sqrt{2}$的项;
③数列{an}的公比必是正数;  ④数列{an}中的首项和公比中必有一个大于1.
A.1个B.2个C.3个D.4个

分析 由等比数列{an}的前10项的积为32,结合等比数列的性质可知${{a}_{5}}^{2}q=2$,然后分别进行判断即可.

解答 解:∵等比数列{an}的前10项的积为32,
∴a1a2a3…a10=${(a}_{5}{a}_{6})^{5}$=32.
∴a5a6=2,
设公比为q,则${{a}_{5}}^{2}q=2$,故q必是正数,故③正确.
由${{a}_{5}}^{2}q=2$可知a5可以为负数,故①错误;
由a5a6=2可以得前10项全为$\sqrt{2}$,故②错误;
由${{a}_{5}}^{2}q=2$可得${{(a}_{1}{q}^{4})}^{2}q={{a}_{1}}^{2}{q}^{9}=2$,可取q=1、${a}_{1}=-\sqrt{2}$均不大于1,故④错误.
故正确的命题是③
故选:A.

点评 本题主要考查与等比数列有关的命题的真假判断,由等比数列的性质得出${{a}_{5}}^{2}q=2$,推出q必是正数是解决问题的关键.考查学生的运算和推理能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网