题目内容

【题目】已知等差数列{an}中,a1=1,且a2+2,a3 , a4﹣2成等比数列.
(1)求数列{an}的通项公式;
(2)若bn= ,求数列{bn}的前n项和Sn

【答案】
(1)解:由a2+2,a3,a4﹣2成等比数列,

=(a2+2)(a4﹣2),

(1+2d)2=(3+d)(﹣1+3d),

d2﹣4d+4=0,解得:d=2,

∴an=1+2(n﹣1)=2n﹣1,

数列{an}的通项公式an=2n﹣1


(2)解:bn= = = ),

Sn= [(1﹣ )+( )+…+( )],

= (1﹣ ),

=

数列{bn}的前n项和Sn,Sn=


【解析】(1)由a2+2,a3 , a4﹣2成等比数列, =(a2+2)(a4﹣2),根据等差数列的通项公式求得d2﹣4d+4=0,即可求得d=2,数列{an}的通项公式;(2)bn= = = ),利用“裂项法”即可求得数列{bn}的前n项和Sn
【考点精析】根据题目的已知条件,利用数列的前n项和的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网