题目内容

【题目】已知正项数列{an}的前n项和为Sn , 且an和Sn满足:4Sn=(an+1)2(n=1,2,3…),
(1)求{an}的通项公式;
(2)设bn= ,求{bn}的前n项和Tn

【答案】
(1)解:∵4Sn=(an+1)2,①

∴4Sn1=(an1+1)2(n≥2),②

①﹣②得

4(Sn﹣Sn1)=(an+1)2﹣(an1+1)2

∴4an=(an+1)2﹣(an1+1)2

化简得(an+an1)(an﹣an1﹣2)=0.

∵an>0,∴an﹣an1=2(n≥2).

∴{an}是以1为首项,2为公差的等差数列.

∴an=1+(n﹣1)2=2n﹣1


(2)解:bn= = = ).

∴Tn= +…+

= (1﹣ )=


【解析】(1)利用递推关系、等差数列的通项公式即可得出;(2)利用“裂项求和”方法即可得出.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网