题目内容
【题目】为了检验训练情况,武警某支队于近期举办了一场展示活动,其中男队员12人,女队员18人,测试结果如茎叶图所示(单位:分).若成绩不低于175分者授予“优秀警员”称号,其他队员则给予“优秀陪练员”称号.
(1)若用分层抽样的方法从“优秀警员”和“优秀陪练员”中共提取10人,然后再从这10人中选4人,那么至少有1人是“优秀警员”的概率是多少?
(2)若所有“优秀警员”中选3名代表,用表示所选女“优秀警员”的人数,试求的分布列和数学期望.
【答案】(1)(2)见解析
【解析】试题分析:
(1)利用题意和对立事件公式可求得至少有1人是“优秀警员”的概率是;
(2)题中的分布列属于超几何分布,据此求得分布列和数学期望即可.
试题解析:
解:(1)根据茎叶图,有“优秀警员”12人,“优秀陪练员”18人
用分层抽样的方法,每个人被抽中的概率是
所以选中的“优秀警员”有4人,“优秀陪练员”有6人.
用事件表示“至少有1名“优秀警员”被选中”,
则 .
因此,至少有1人是“优秀警员”的概率是
(2)依题意,的取值为,,,.
, ,
, ,
因此,的分布列如下:
0 | 1 | 2 | 3 | |
练习册系列答案
相关题目
【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.
(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
购买意愿强 | 购买意愿弱 | 合计 | |
20~40岁 | |||
大于40岁 | |||
合计 |
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.
附:.