题目内容
已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.
【答案】
(1)椭圆方程为。
(2)在x轴上存在点M(), 使是与K无关的常数.
【解析】
试题分析:(1)∵椭圆离心率为,
∴,∴. 1分
又椭圆过点(,1),代入椭圆方程,得. 2分
所以. 4分
∴椭圆方程为,即. 5分
(2)在x轴上存在点M,使是与K无关的常数. 6分
证明:假设在x轴上存在点M(m,0),使是与k无关的常数,
∵直线L过点C(-1,0)且斜率为K,∴L方程为,
由 得. 7分
设,则 8分
∵
∴ 9分
=
=
=
= 10分
设常数为t,则. 11分
整理得对任意的k恒成立,
解得, 12分
即在x轴上存在点M(), 使是与K无关的常数. 13分
考点:椭圆的标准方程及几何性质,直线与椭圆的位置关系,平面向量的数量积。
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。求椭圆标准方程时,主要运用了椭圆的几何性质,建立了a,bac的方程组。(2)作为研究,应用韦达定理,建立了m的函数式,利用函数观点,求得m的值,肯定存在性,使问题得解。
练习册系列答案
相关题目
已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不对 |
已知椭圆的离心率为
,焦点是(-3,0),(3,0),则椭圆方程为( )
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|